5.9k views
1 vote
Consider line segment DG, where D is (-4, 8) and G is (6, -2). Find the coordinates of point E such that DE:EG is 3:2.

1 Answer

4 votes

Answer:

Coordinates of E= (2,2)

Explanation:

Coordinates of D→ (-4,8) (x₁,y₁)

Coordinates of G→ (6,-2) (x₂,y₂)

Ratio= 3:2 (m:n)

Coordinates of E→ (
(mx2+nx1)/(m+n),
(my2+ny1)/(m+n))

= (
(3x6+2x-4)/(3+2),
(3x-2+2x8)/(3+2))

= (
(18-8)/(5),
(-6+16)/(5))

= (
(10)/(5),
(10)/(5))

= (2,2)

∴ coordinates of point E is (2,2).

User Z Star
by
7.2k points