98.7k views
5 votes
Verify:
(1)/(tanx) + tanx = (sec^(2)x )/(tanx)

1 Answer

0 votes

Answer:

Explanation:


(1+tan^(2) x )/(tanx) =(sec^(2) )/(tanx) \\divide \ each \ side \ with \ tanx,\\1+tan^(2) x=sec^(2)


tan^(2) x=(sec^(2) x)/(cos^(2) x) \\1+(sec^(2) x)/(cos^(2) x) \\=sec^(2) x\\(cos^(2) x)/(cos^(2) x) +(sec^(2) x)/(cos^(2) x)=(cos^(2) x+sec^(2)x )/(cos^(2) x) \\which \ we \ know \ cos^(2) x+sec^(2)x =1\\so,(cos^(2) x+sec^(2)x )/(cos^(2) x) =1/cos^(2) x=sec^(2) x\\sec^(2) x*cos^(2) x=1

User Stativ
by
8.1k points