141k views
1 vote
Find all roots of the equation:

Find all roots of the equation:-example-1
User Samreen
by
8.1k points

1 Answer

3 votes


\left| \log_7(x^8)\cfrac{}{} \right|~~ - ~~\left( ~~ \log_(49)(x^2) ~~ \right)^2 = 7 \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \left| \log_7(x^8)\cfrac{}{} \right|\implies \pm\log_7(x^8)\implies \pm 8\log_7(x) \\\\[-0.35em] ~\dotfill\\\\ \left( ~~ \log_(49)(x^2) ~~ \right)^2\implies \left( ~~ \cfrac{\log_7(x^2)}{\log_7(49)} ~~ \right)^2\implies \left( ~~ \cfrac{\log_7(x^2)}{\log_7(7^2)} ~~ \right)^2


\left( ~~ \cfrac{\log_7(x^2)}{2} ~~ \right)^2\implies \left( ~~ (1)/(2)\log_7(x^2) ~~ \right)^2\\\\\\ \left( ~~ \log_7(x^{2\cdot (1)/(2)}) ~~ \right)^2 \implies \left( ~~ \log_7(x) ~~ \right)^2 \\\\[-0.35em] ~\dotfill\\\\ \left| \log_7(x^8)\cfrac{}{} \right|~~ - ~~\left( ~~ \log_(49)(x^2) ~~ \right)^2=7 \implies \pm 8\log_7(x)~~ - ~~\left( ~~ \log_7(x) ~~ \right)^2=7 \\\\[-0.35em] ~\dotfill\\\\ \textit{now let's make }\hspace{5em}\log_7(x)=Z \\\\[-0.35em] ~\dotfill


\mp 8Z-Z^2=7\implies 0=Z^2\pm 8Z+7\implies 0= \begin{cases} Z^2+ 8Z+7\\ Z^2 - 8Z+7 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ 0=Z^2+8Z+7\implies 0=(Z+7)(Z+1)\implies 0=[\log_7(x)+7][\log_7(x)+1] \\\\\\ 0=Z^2-8Z+7\implies 0=(Z-7)(Z-1)\implies 0=[\log_7(x)-7][\log_7(x)-1]

now, let's process for each case to get its roots


0=\log_7(x)+7\implies -7=\log_7(x)\implies 7^(-7)=7^(\log_7(x))\implies \boxed{7^(-7)=x} \\\\\\ 0=\log_7(x)+1\implies -1=\log_7(x)\implies 7^(-1)=7^(\log_7(x))\implies \boxed{7^(-1)=x} \\\\\\ 0=\log_7(x)-7\implies 7=\log_7(x)\implies 7^(7)=7^(\log_7(x))\implies \boxed{7^(7)=x} \\\\\\ 0=\log_7(x)+1\implies 1=\log_7(x)\implies 7^(1)=7^(\log_7(x))\implies \boxed{7=x}

User Nithin Thampi
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories