86.8k views
4 votes
How do I solve this? I just need to know the steps to solve.

How do I solve this? I just need to know the steps to solve.-example-1
User BraX
by
7.0k points

1 Answer

4 votes

Answer:


\frac{√(2)\sqrt[4]{3}}{3}

Explanation:

Given radical expression:


\frac{\sqrt[4]{4}}{\sqrt[4]{27}}

Rewrite 4 as 2² and 27 as 3³:


\implies \frac{\sqrt[4]{2^2}}{\sqrt[4]{3^3}}


\textsf{Apply the exponent rule:} \quad \sqrt[n]{a}=a^{(1)/(n)}


\implies \frac{\left(2^2\right)^{(1)/(4)}}{\left(3^3\right)^{(1)/(4)}}


\textsf{Apply the exponent rule:} \quad (a^b)^c=a^(bc)


\implies \frac{2^{(2)/(4)}}{3^{(3)/(4)}}

Simplify the numerator:


\implies \frac{2^{(1)/(2)}}{3^{(3)/(4)}}


\implies \frac{√(2)}{3^{(3)/(4)}}

Multiply the numerator and denominator by
3^{(1)/(4)}:


\implies \frac{√(2)\cdot 3^{(1)/(4)}}{3^{(3)/(4)}\cdot 3^{(1)/(4)}}


\textsf{Apply the exponent rule:} \quad a^b \cdot a^c=a^(b+c)


\implies \frac{√(2)\cdot 3^{(1)/(4)}}{3^{(3)/(4)+(1)/(4)}}


\implies \frac{√(2)\cdot 3^{(1)/(4)}}{3^1}


\implies \frac{√(2)\cdot 3^{(1)/(4)}}{3}


\textsf{Apply the exponent rule:} \quad a^{(1)/(n)}=\sqrt[n]{a}


\implies \frac{√(2)\sqrt[4]{3}}{3}

User The Venom
by
7.3k points