86.9k views
4 votes
How do I solve this? I just need to know the steps to solve.

How do I solve this? I just need to know the steps to solve.-example-1
User BraX
by
7.7k points

1 Answer

4 votes

Answer:


\frac{√(2)\sqrt[4]{3}}{3}

Explanation:

Given radical expression:


\frac{\sqrt[4]{4}}{\sqrt[4]{27}}

Rewrite 4 as 2² and 27 as 3³:


\implies \frac{\sqrt[4]{2^2}}{\sqrt[4]{3^3}}


\textsf{Apply the exponent rule:} \quad \sqrt[n]{a}=a^{(1)/(n)}


\implies \frac{\left(2^2\right)^{(1)/(4)}}{\left(3^3\right)^{(1)/(4)}}


\textsf{Apply the exponent rule:} \quad (a^b)^c=a^(bc)


\implies \frac{2^{(2)/(4)}}{3^{(3)/(4)}}

Simplify the numerator:


\implies \frac{2^{(1)/(2)}}{3^{(3)/(4)}}


\implies \frac{√(2)}{3^{(3)/(4)}}

Multiply the numerator and denominator by
3^{(1)/(4)}:


\implies \frac{√(2)\cdot 3^{(1)/(4)}}{3^{(3)/(4)}\cdot 3^{(1)/(4)}}


\textsf{Apply the exponent rule:} \quad a^b \cdot a^c=a^(b+c)


\implies \frac{√(2)\cdot 3^{(1)/(4)}}{3^{(3)/(4)+(1)/(4)}}


\implies \frac{√(2)\cdot 3^{(1)/(4)}}{3^1}


\implies \frac{√(2)\cdot 3^{(1)/(4)}}{3}


\textsf{Apply the exponent rule:} \quad a^{(1)/(n)}=\sqrt[n]{a}


\implies \frac{√(2)\sqrt[4]{3}}{3}

User The Venom
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories