The value of
over the given region R is 54.
Given the region R defined by the inequalities
,
, and
, it forms a triangle in the first quadrant of the xy-plane.
The integral to evaluate is:
![\[ \iint_(R) x y \, dA \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3ef6zezibyr2x1tk2flwmobz3zpxmdvemq.png)
To integrate over this region, we'll express the integral in terms of x and y. The limits of integration for x and y are based on the bounds of the triangle.
The bounds for x are from 0 to 6 (as
).
The bounds for y are from 0 to 6 (as
).
So, the integral becomes:
![\[ \iint_(R) x y \, dA = \int_(0)^(6) \int_(0)^(6-x) xy \, dy \, dx \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4hzd3jgb5g4ncjnvn5j3269e1i7g9tr66m.png)
Let's solve it step by step:
![\[ \int_(0)^(6) \int_(0)^(6-x) xy \, dy \, dx \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/sckwi6edriwd245lxsdn3w513nneonvge0.png)
![\[ = \int_(0)^(6) \left[x \cdot (y^2)/(2)\right]_(0)^(6-x) \, dx \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lix0g4l6bxipljxc4s4l70v9fimnrw1sgw.png)
![\[ = \int_(0)^(6) x \cdot ((6-x)^2)/(2) \, dx \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/6evq4jie2p30oybb4qzjti5bift289jlso.png)
![\[ = \int_(0)^(6) x \cdot (36 - 12x + x^2)/(2) \, dx \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/48mu7i52y9pib4xu8vwy2kx2fbwjh5gno5.png)
![\[ = \int_(0)^(6) \left(18x - 6x^2 + (x^3)/(2)\right) \, dx \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/depith60tikugvl2y95j1ifedb55t6xycl.png)
![\[ = \left[(18x^2)/(2) - (6x^3)/(3) + (x^4)/(8)\right]_(0)^(6) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/66trze76rgq9qmp23zfq787si4ojawe2cq.png)
![\[ = \left[9x^2 - 2x^3 + (x^4)/(8)\right]_(0)^(6) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/de9za8tqtl0xmc97ggez8uvowh1w7go1aw.png)
![\[ = 9(6)^2 - 2(6)^3 + ((6)^4)/(8) - 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5ly5sku6o335pwzec7oyohg2fo8pfbynf4.png)
![\[ = 9(36) - 2(216) + 162 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/a1zs3eiv7mbig3nj7bk5bpppssegcw9ktl.png)
![\[ = 324 - 432 + 162 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wbr981x4isuxh2kqe0mc2a4u0q2r6ga9b1.png)
![\[ = 486 - 432 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c16t73h4rbey3l9kh8le46036a8cvw3u0e.png)
![\[ = 54 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/phj56adhfu82bo9xevl6erdez8ya0p3h8w.png)
Therefore, after evaluating the integral, the value of
![\[ \iint_(R) x y \, dA = 54 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hz5rgj3hwq5b6ij80eer2xd7en9kdqvrdk.png)
Question:
Evaluate the integral
, where R is the triangle
. Enter the exact answer as improper fraction if necessary.
![\[\iint_(R) x y d A=\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7xm8igitelwe4v3itpe82uo7wgtjguia7w.png)