9.6k views
5 votes
Question 4 trigonometry

Question 4 trigonometry-example-1
User Umlum
by
7.4k points

1 Answer

5 votes

Answer:

See below for proof.

Explanation:

Rewrite 110° as the sum of 80° and 30°:


\implies \sin 110^(\circ)=\sin \left(80^(\circ)+30^(\circ)\right)

Given sin 80° = t and using the trigonometric identity sin²θ + cos²θ = 1, find an expression for cos 80° in terms of t:


\implies \sin^280^(\circ)+\cos^280^(\circ) =1


\implies t^2+\cos^280^(\circ) =1


\implies \cos^280^(\circ) =1-t^2


\implies \cos80^(\circ) =√(1-t^2)


\boxed{\begin{minipage}{6.5 cm}\underline{Sine Double Angle Identity}\\\\$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$\\\end{minipage}}

Apply the Sine Double Angle identity to sin (80° + 30°):


\implies \sin \left(80^(\circ)+30^(\circ)\right)=\sin 80^(\circ) \cos 30^(\circ) + \cos 80^(\circ) \sin 30^(\circ)


\textsf{As}\;\; \boxed{\cos 30^(\circ)=(√(3))/(2)}\;\;\textsf{and}\;\;\boxed{\sin30^(\circ)=(1)/(2)}\:,\; \textsf{substitute these values into the equation:}


\implies \sin \left(80^(\circ)+30^(\circ)\right)=\sin 80^(\circ)\cdot (√(3))/(2) + \cos 80^(\circ) \cdot (1)/(2)

Substitute the expressions for sin 80° and cos 80° in terms of t:


\implies \sin \left(80^(\circ)+30^(\circ)\right)=t\cdot (√(3))/(2) +√(1-t^2) \cdot (1)/(2)

Simplify:


\implies \sin \left(80^(\circ)+30^(\circ)\right)=(√(3)\:t)/(2) +(√(1-t^2) )/(2)


\implies \sin \left(80^(\circ)+30^(\circ)\right)=(√(3)\:t+√(1-t^2))/(2)


\textsf{Thus proving:}\;\;\;\sin \left(110^(\circ)\right)=(√(3)\:t+√(1-t^2))/(2)

-------------------------------------------------------------------------------------------

As one calculation:


\begin{aligned}\implies \sin 110^(\circ)&=\sin \left(80^(\circ)+30^(\circ)\right)\\\\&=\sin 80^(\circ) \cos 30^(\circ) + \cos 80^(\circ) \sin 30^(\circ)\\\\&=\sin 80^(\circ)\cdot (√(3))/(2) + \cos 80^(\circ) \cdot (1)/(2)\\\\&=t\cdot (√(3))/(2) +√(1-t^2) \cdot (1)/(2)\\\\&=(√(3)\:t)/(2) +(√(1-t^2) )/(2)\\\\&=(√(3)\:t+√(1-t^2))/(2)\end{aligned}

User Justmscs
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories