34.4k views
0 votes
Select the two values of x that are roots of this equation.

x^2+3x-5=0

Select the two values of x that are roots of this equation. x^2+3x-5=0-example-1
User Zuleyma
by
6.6k points

1 Answer

3 votes

Option:-


  • { \rm \bold{{A ) x = ( - 3 + √(29) )/(2) }}}


\:


  • { \rm{ \bold{C )x = ( - 3 - √(29) )/(2) }}}


\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Given:-


  • \rm {x}^(2) + 3x - 5 = 0


\:

By using quadratic equation formula:-


  • \rm \bold{{a {x}^(2) + bx + c = 0 }}


\:

Formula:-


  • \boxed{ \rm{ \red{x = \frac{ - b \pm \sqrt{ {b}^(2) - 4ac} }{2a} }}}


\:

Solution:-


  • \boxed{ \underline{ \rm \bold{\: a = 1, b = 3 , c = -5 }}}


\:


  • \rm{ \bold{x = \frac{ - b \pm\sqrt{ {b }^(2) - 4ac } }{2a}} }


\:


  • \rm \: x \: \frac{ - 3 + \sqrt{ {(3)}^(2) - 4 * 1 * ( - 5) } }{2 * 1}


\:


  • \rm \: x \: ( - 3 + √( 9- 4 * ( - 5) ) )/(2 )


\:


  • \rm \:x = ( - 3 + √(9 - ( - 20)) )/(2)


\:


  • \underline{\boxed{ \green{ \rm \bold{ \: x = ( - 3 + √(29) )/(2) }}}}


\:

and ,


  • \rm \: x \: \frac{ - 3 - \sqrt{ {(3)}^(2) - 4 * 1 * ( - 5) } }{2 * 1}


\:


  • \rm \: x \: ( - 3 - √( 9- 4 * ( - 5) ) )/(2 )


\:


  • \rm{x = ( - 3 - √(9 - ( - 20)) )/(2) }


\:


  • \underline{ \boxed{ \rm{ \bold{\color{green}x = ( - 3 - √(29) )/(2) }}}}


\:

hope it helps! :)

User Joran Beasley
by
7.7k points