34.4k views
0 votes
Select the two values of x that are roots of this equation.

x^2+3x-5=0

Select the two values of x that are roots of this equation. x^2+3x-5=0-example-1
User Zuleyma
by
7.3k points

1 Answer

3 votes

Option:-


  • { \rm \bold{{A ) x = ( - 3 + √(29) )/(2) }}}


\:


  • { \rm{ \bold{C )x = ( - 3 - √(29) )/(2) }}}


\:

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Given:-


  • \rm {x}^(2) + 3x - 5 = 0


\:

By using quadratic equation formula:-


  • \rm \bold{{a {x}^(2) + bx + c = 0 }}


\:

Formula:-


  • \boxed{ \rm{ \red{x = \frac{ - b \pm \sqrt{ {b}^(2) - 4ac} }{2a} }}}


\:

Solution:-


  • \boxed{ \underline{ \rm \bold{\: a = 1, b = 3 , c = -5 }}}


\:


  • \rm{ \bold{x = \frac{ - b \pm\sqrt{ {b }^(2) - 4ac } }{2a}} }


\:


  • \rm \: x \: \frac{ - 3 + \sqrt{ {(3)}^(2) - 4 * 1 * ( - 5) } }{2 * 1}


\:


  • \rm \: x \: ( - 3 + √( 9- 4 * ( - 5) ) )/(2 )


\:


  • \rm \:x = ( - 3 + √(9 - ( - 20)) )/(2)


\:


  • \underline{\boxed{ \green{ \rm \bold{ \: x = ( - 3 + √(29) )/(2) }}}}


\:

and ,


  • \rm \: x \: \frac{ - 3 - \sqrt{ {(3)}^(2) - 4 * 1 * ( - 5) } }{2 * 1}


\:


  • \rm \: x \: ( - 3 - √( 9- 4 * ( - 5) ) )/(2 )


\:


  • \rm{x = ( - 3 - √(9 - ( - 20)) )/(2) }


\:


  • \underline{ \boxed{ \rm{ \bold{\color{green}x = ( - 3 - √(29) )/(2) }}}}


\:

hope it helps! :)

User Joran Beasley
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories