Answer:
the inverse of f(x) = 5x^3 is g(x) = (x/5)^(1/3).
Explanation:
To find the inverse of f(x) = 5x^3, we need to find a function g(x) such that g(f(x)) = x.
Let y = f(x) = 5x^3, then we solve for x in terms of y:
y = 5x^3
x^3 = y/5
x = (y/5)^(1/3)
Thus, g(x) = (x/5)^(1/3).
Therefore, the inverse of f(x) = 5x^3 is g(x) = (x/5)^(1/3).