44.1k views
3 votes
If Steve drives 5 miles to school at 10 mph and returns home at 40 mph, what is his average speed?

User CptScarlet
by
7.2k points

2 Answers

2 votes

Answer:

16 mph

Explanation:

User Celso Marigo Jr
by
7.8k points
4 votes

Answer:

Explanation:

To find the average speed for the round trip, we can use the formula:

average speed = total distance / total time

We know that Steve drives 5 miles to school and 5 miles back home, so the total distance is:

total distance = 5 miles + 5 miles = 10 miles

To find the total time, we need to calculate the time it takes for Steve to drive to school and the time it takes for him to return home. We can use the formula:

time = distance / speed

For the first part of the trip, Steve drives 5 miles at 10 mph, so the time it takes is:

time to school = 5 miles / 10 mph = 0.5 hours

For the second part of the trip, Steve drives 5 miles at 40 mph, so the time it takes is:

time to home = 5 miles / 40 mph = 0.125 hours

The total time for the round trip is the sum of the time to school and the time to home:

total time = time to school + time to home

total time = 0.5 hours + 0.125 hours

total time = 0.625 hours

Now we can calculate the average speed using the formula:

average speed = total distance / total time

average speed = 10 miles / 0.625 hours

average speed = 16 miles per hour (rounded to the nearest integer)

Therefore, Steve's average speed for the round trip is 16 mph.

User Sosumi
by
8.2k points