Answer: Solution
verified
Verified by Toppr
−log
2
(4−x)≥−log
2+log
(x−1)
log
2−log
(4−x)≥log
Taking antilog, we get,
4−x
≥x−1
2−(4−x)(x−1)
≥0
4x
2−(4x−4−x
+x)
x−4
2−5x+x
+4
x
−5x+6
≤0
(x−4)
(x−3)(x−2)
therefore,
xε(−∞,2]∪[3,4)
Now,asx<4andx>1
xε(1,4)
so,wecansaythat,
xε(1,2]∪[3,4)
Explanation:
9.5m questions
12.2m answers