75.3k views
2 votes
Put the equation in standard form

Put the equation in standard form-example-1

1 Answer

5 votes

Answer:


\left(x - {\left\bold{[4\right]}}\right)^2 + \left(y - \left\bold{[10\right]}\right)^2 =\left[\bold{1}\right]

Explanation:

The given equation
x^2+y^2-8x-20y+115=0\quad\quad(1)

is the equation of a circle

The standard form of the equation for a circle is

(x - a)^2 + (y-b)^2 = r^2\\\\where\\\\center\;of\;circle = (a, b)\\\\r = radius

To convert equation (1) to standard form

  • Move the constant to the right side:

    x^2+y^2-8x-20y = -115
  • Group x and y variables:

    \left(x^2-8x\right)+\left(y^2-20y\right)=-115
  • Convert (x²- 8x) to square form by adding 16 on both sides

    \left(x^2-8x+16\right)+\left(y^2-20y\right)=-115+16
  • Convert (y² - 20y) to square form by adding 100 to both sides:

    \left(x^2-8x+16\right) + \left(y^2-20y+100\right) = -115 + 16 + 100\\\\

  • \left(x^2-8x+16\right) = (x-4)^2

    \left(y^2-20y+100\right) =(y - 10)^2

Therefore we get

\left(x-4\right)^2+\left(y-10\right)^2=-115+16+100\\\\\implies \left(x-4\right)^2+\left(y-10\right)^2= 1

1 = 1²

So the standard form is

\left(x-4\right)^2+\left(y-10\right)^2=-115+16+100\\\\\implies \boxed{\left(x-4\right)^2+\left(y-10\right)^2= 1^2}

This indicates a circle with center (4, 10) with radius r = 1

User Yuichi Araki
by
7.9k points