Answer:
36
Explanation:
To evaluate 3(a+b)², we first need to expand the square of the binomial (a+b)² using the formula:
(a+b)² = a² + 2ab + b²
Substituting the given values of a², b², and ab, we get:
(a+b)² = a² + 2ab + b²
= (a² + b²) + 2ab (since a² + b² = 16)
= 16 + 2(-2)
= 12
Now, we can substitute this value in the expression 3(a+b)²:
3(a+b)² = 3(12)
= 36
Therefore, 3(a+b)² is equal to 36.