157k views
1 vote
Let $a$, $b$, $c$, and $d$ be distinct real numbers such that \begin{align*} a &= \sqrt{4 + \sqrt{5 + a}}, \\ b &= \sqrt{4 - \sqrt{5 + b}}, \\ c &= \sqrt{4 + \sqrt{5 - c}}, \\ d &= \sqrt{4 - \sqrt{5 - d}}. \end{align*}Compute $abcd$

User Bloodied
by
6.9k points

1 Answer

4 votes

Answer:

Let $a$, $b$, $c$, and $d$ be distinct real numbers such that \begin{align*} a &= \sqrt{4 + \sqrt{5 + a}}, \\ b &= \sqrt{4 - \sqrt{5 + b}}, \\ c &= \sqrt{4 + \sqrt{5 - c}}, \\ d &= \sqrt{4 - \sqrt{5 - d}}. \end{align*}Compute $abcd$

Step-by-step explanation:

Let $a$, $b$, $c$, and $d$ be distinct real numbers such that \begin{align*} a &= \sqrt{4 + \sqrt{5 + a}}, \\ b &= \sqrt{4 - \sqrt{5 + b}}, \\ c &= \sqrt{4 + \sqrt{5 - c}}, \\ d &= \sqrt{4 - \sqrt{5 - d}}. \end{align*}Compute $abcd$

User Mamnarock
by
8.6k points