203k views
0 votes
Complete the square for 3x^2 - 5x - 2

User Matt Green
by
8.4k points

1 Answer

0 votes

Answer:


3\left(x-(5)/(6)\right)^2-(49)/(12)

Explanation:

Given quadratic expression:


3x^2 - 5x - 2

To complete the square, factor out the coefficient of the leading term:


\implies 3\left(x^2-(5)/(3)x-(2)/(3)\right)

Add and subtract the square of half the coefficient of the term in x inside the parentheses:


\implies 3\left(x^2-(5)/(3)x+\left(((-5)/(3))/(2)\right)^2-\left(((-5)/(3))/(2)\right)^2-(2)/(3)\right)

Simplify:


\implies 3\left(x^2-(5)/(3)x+\left((-5)/(6)\right)^2-\left((-5)/(6)\right)^2-(2)/(3)\right)


\implies 3\left(x^2-(5)/(3)x+(25)/(36)-(25)/(36)-(2)/(3)\right)

Factor the perfect square trinomial formed by the first three terms inside the parentheses:


\implies 3\left(\left(x-(5)/(6)\right)^2-(25)/(36)-(2)/(3)\right)

Distribute:


\implies 3\left(x-(5)/(6)\right)^2-(75)/(36)-(6)/(3)


\implies 3\left(x-(5)/(6)\right)^2-(25)/(12)-2

Simplify:


\implies 3\left(x-(5)/(6)\right)^2-(25)/(12)-(24)/(12)


\implies 3\left(x-(5)/(6)\right)^2-(49)/(12)

User Pavel Tarno
by
8.2k points