122k views
1 vote
Find the limit lim………..

Find the limit lim………..-example-1

1 Answer

4 votes

Answer:

The solution is 1/8

Explanation:


\sf \displaystyle \lim_(x \to 16)  \sf ( √(x) - 4 )/(x - 16) \\ \\ \sf {a}^(2) - {b}^(2) = (a - b) (a + b)\\ \\ \sf \displaystyle \lim_(x \to 16)  \sf ( √(x) - 4 )/(( √(x) - 4) * ( √(x) + 4)) \\ \\ \sf \displaystyle \lim_(x \to 16)  \sf \frac{ \cancel{√(x) - 4} }{(\cancel{ √(x) - 4) }* ( √(x) + 4)} \\ \\ \sf \displaystyle \lim_(x \to 16)  \sf (1)/( √(x) + 4) \\ \\ \sf (1)/( √(16) + 4) \\ \\ \sf (1)/( 4 + 4) \\ \\ \sf (1)/(8)

User Sam Bisbee
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories