122k views
1 vote
Find the limit lim………..

Find the limit lim………..-example-1

1 Answer

4 votes

Answer:

The solution is 1/8

Explanation:


\sf \displaystyle \lim_(x \to 16)  \sf ( √(x) - 4 )/(x - 16) \\ \\ \sf {a}^(2) - {b}^(2) = (a - b) (a + b)\\ \\ \sf \displaystyle \lim_(x \to 16)  \sf ( √(x) - 4 )/(( √(x) - 4) * ( √(x) + 4)) \\ \\ \sf \displaystyle \lim_(x \to 16)  \sf \frac{ \cancel{√(x) - 4} }{(\cancel{ √(x) - 4) }* ( √(x) + 4)} \\ \\ \sf \displaystyle \lim_(x \to 16)  \sf (1)/( √(x) + 4) \\ \\ \sf (1)/( √(16) + 4) \\ \\ \sf (1)/( 4 + 4) \\ \\ \sf (1)/(8)

User Sam Bisbee
by
7.9k points