183k views
1 vote
I can’t get this right!!!!

I can’t get this right!!!!-example-1
User Wstk
by
8.3k points

1 Answer

2 votes

Answer:


\csc \theta=(√(61))/(6)


\sin \theta=(6)/(√(61))=(6√(61))/(61)


\cot \theta=(5)/(6)

Explanation:

Use Pythagoras Theorem to calculate the length of the hypotenuse of the given right triangle:


\implies a^2+b^2=c^2


\implies 5^2+6^2=c^2


\implies 25+36=c^2


\implies c^2=61


\implies c=√(61)

Therefore:

  • The side opposite angle θ is 6 units.
  • The side adjacent angle θ is 5 units.
  • The hypotenuse is √(61) units.


\boxed{\begin{minipage}{8cm}\underline{Trigonometric ratios}\\\\$\sf \sin(\theta)=(O)/(H)\quad\cos(\theta)=(A)/(H)\quad\tan(\theta)=(O)/(A)$\\\\\\$\sf\csc(\theta)=(H)/(O)\quad\sec(\theta)=(H)/(A)\quad\cot(\theta)=(A)/(O)$\\\\where:\\\phantom{ww}$\bullet$ $\theta$ is the angle.\\\phantom{ww}$\bullet$ $\sf O$ is the side opposite the angle.\\\phantom{ww}$\bullet$ $\sf A$ is the side adjacent the angle.\\\phantom{ww}$\bullet$ $\sf H$ is the hypotenuse.\\\end{minipage}}

Substitute the given values into each ratio:


\csc \theta=(√(61))/(6)


\sin \theta=(6)/(√(61))


\cot \theta=(5)/(6)

Note: The sin θ ratio can also be written as:


\implies \sin \theta=(6)/(√(61))\cdot (√(61))/(√(61))


\implies \sin \theta=(6√(61))/(61)

User Chris Lindseth
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories