183k views
1 vote
I can’t get this right!!!!

I can’t get this right!!!!-example-1
User Wstk
by
7.8k points

1 Answer

2 votes

Answer:


\csc \theta=(√(61))/(6)


\sin \theta=(6)/(√(61))=(6√(61))/(61)


\cot \theta=(5)/(6)

Explanation:

Use Pythagoras Theorem to calculate the length of the hypotenuse of the given right triangle:


\implies a^2+b^2=c^2


\implies 5^2+6^2=c^2


\implies 25+36=c^2


\implies c^2=61


\implies c=√(61)

Therefore:

  • The side opposite angle θ is 6 units.
  • The side adjacent angle θ is 5 units.
  • The hypotenuse is √(61) units.


\boxed{\begin{minipage}{8cm}\underline{Trigonometric ratios}\\\\$\sf \sin(\theta)=(O)/(H)\quad\cos(\theta)=(A)/(H)\quad\tan(\theta)=(O)/(A)$\\\\\\$\sf\csc(\theta)=(H)/(O)\quad\sec(\theta)=(H)/(A)\quad\cot(\theta)=(A)/(O)$\\\\where:\\\phantom{ww}$\bullet$ $\theta$ is the angle.\\\phantom{ww}$\bullet$ $\sf O$ is the side opposite the angle.\\\phantom{ww}$\bullet$ $\sf A$ is the side adjacent the angle.\\\phantom{ww}$\bullet$ $\sf H$ is the hypotenuse.\\\end{minipage}}

Substitute the given values into each ratio:


\csc \theta=(√(61))/(6)


\sin \theta=(6)/(√(61))


\cot \theta=(5)/(6)

Note: The sin θ ratio can also be written as:


\implies \sin \theta=(6)/(√(61))\cdot (√(61))/(√(61))


\implies \sin \theta=(6√(61))/(61)

User Chris Lindseth
by
7.9k points