220k views
0 votes
Given f(x)=x^3−2x^2−8x find any point(s) of inflection y=f(x) may have.

User Sesm
by
9.1k points

1 Answer

5 votes

Answer:


((2)/(3),-(160)/(27))

Explanation:

Given:


f(x)=x^(3)-2x^(2)-8x

Required:

Determine the point of inflection of the given function.


f'(x)=3x^(2)-4x-8


f^(11)(x)=6x-4=0


6x=4


x=(4)/(6)=(2)/(3)

Substitute for x in the function.


y=x^(3)-2x^(2)-8x=((2)/(3))^(3)-2((2)/(3))-8((2)/(3))=-(160)/(27)

So, the point of inflection is:


((2)/(3),-(160)/(27))

Answer:


((2)/(3),-(160)/(27))

User Mark Hobson
by
7.7k points