159k views
4 votes
If AB√48,BC=2√30 and AC2√18 then ABC is

User Stina
by
7.6k points

1 Answer

6 votes

Answer:


12√(2)\sqrt[4]{5}

or


25.38

Explanation:

We are given:



AB = √( 48)\\\\BC = 2√(30)\\\\AC = 2√(18)\\\\

Simplify each square root to the lowest radical:

√( 48) = √(16 \cdot 3) = √(16)\cdot √(3) = 4 √(3)\\\\2√(30) = 2 √(3 \cdot 10) = 2 √(3) √(10)\\\\2√(18) = 2 √(9 \cdot 2 ) = 2 √(9) \cdot √(2) = 2 \cdot 3√(2) = 6√(2)\\\\

Multiplying all three:

4 √(3) * 2 √(3) √(10) * 3√(2)

First multiply all terms not under square root:

4 x 2 x 6 = 48

Then multiply all the radicals which are the same:



√(3) * √(3){√(10) * √(2)


√(10) = √(2)√(5)

This works out to

√(3){√(3)√(2)√(5)√(2)

Rearranging the radicals

√(3)√(3)√(2){√(2)√(5) = (√(3))^2 \cdot (√(2))^2 \cdot √(5)\\\\= 3 \cdot 2 \cdot √(5)\\\\= 6 √(5)\\\\

Multiplying by 48, the value we got by multiplication of the terms not under square root we get this value as:

48 * 6√(5)


= 288√(5)

= 643.98757

This is equal to
AB \cdot BC \cdot AC = A^2B^2C^2 = (ABC)^2


ABC = \sqrt{288√(5)} \\\\√(288) = √(144 \cdot 2) = 12 √(2)


\sqrt{√(5)} = \sqrt[4]{5}

ABC =
12√(2)\sqrt[4]{5}

In decimal this would be


√(643.98757) = 25.37691 \approx 25.38

User MichaD
by
7.3k points