Answer:
x = -2 ± 3√2
Explanation:
x^2 + 4x + 4 = 18:
or, (x + 2)^2 = 18
Taking the square root of both sides, we get:
or, x + 2 = ±√18
or, x + 2 = ±3√2
or,x = -2 ± 3√2
therefore, x = -2 + 3√2 or x = -2 - 3√2
or,
using Shridharacharya's formula
x = (-b ± √(b^2 - 4ac)) / (2a)
now,
x^2 + 4x + 4 = 18.
or, x^2 + 4x + 4 - 18 = 0
or, x^2 + 4x - 14 = 0
or, x = (-4 ± √(4^2 - 4(1)(-14))) / (2(1))
or, x = (-4 ± √(16 + 56)) / 2
or, x = (-4 ± √72) / 2
(√72 = √(36 x 2) =6√2)
or, x = (-4 ±6√2 ) / 2
or, x = -2 ± 3√2
Therefore,x = -2 + 3√2 and x = -2 - 3√2.