A period is the difference in x over which a sine function returns to its equivalent state and the amplitude is A/5.
Amplitude:
The amplitude of a periodic variable is a measure of its change over a period of time, such as a temporal or spatial period. The amplitude of an aperiodic signal is its magnitude compared to a reference value. There are various definitions (see below) of amplitude, which is any function of the magnitude of the difference between the extreme values of a variable. In the previous text, the phase of a periodic function is called the amplitude.
X = A sin (ω[ t - K]) + b
A is the amplitude (or peak amplitude),
x is the oscillating variable,
ω is angular frequency,
t is time,
K and b are arbitrary constants representing time and displacement respectively.
According to the Question:
An equation does not have an amplitude. This "equation" represents the formula of a vibration, and was better written as:
X= A/5* sin(1000.t + 120)
These oscillations have a certain amplitude. X values can vary from minimum to maximum. Normally, the stop position of the oscillation is X=0. In this case, we can see that the maximum occurs when the sine is +1 and the minimum occurs when the sine is -1.
For theses cases X= A/5 respectively -A/5.
Therefore,
The amplitude is A/5.
For formulas of this type, the term in front of the sinus (or cosine) is equal to the amplitude.
Complete question:
Can I find the amplitude of this equation? A/5 *