Answer:

Explanation:
Differentiating from First Principles is a technique to find an algebraic expression for the gradient at a particular point on the curve.
![\boxed{\begin{minipage}{5.6 cm}\underline{Differentiating from First Principles}\\\\\\$\text{f}\:'(x)=\displaystyle \lim_(h \to 0) \left[\frac{\text{f}(x+h)-\text{f}(x)}{(x+h)-x}\right]$\\\\\end{minipage}}](https://img.qammunity.org/2024/formulas/mathematics/college/j5zlh0qcsbojf1fmop2flnegkno812ohio.png)
The point (x + h, f(x + h)) is a small distance along the curve from (x, f(x)).
As h gets smaller, the distance between the two points gets smaller.
The closer the points, the closer the line joining them will be to the tangent line.
To differentiate y = sin(x) using first principles, substitute f(x + h) = sin(x + h) and f(x) = sin(x) into the formula:
![\implies \displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(\sin(x+h)-\sin(x))/((x+h)-x)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/wijaolfu9foebnhkbwysrhoy3ok3xxvtaw.png)
Use the sin addition formula to expand sin(x + h).

![\implies \displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(\sin(x)\cos(h)+\cos(x)\sin(h)-\sin(x))/((x+h)-x)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/4bqa5cpruj24ilmgbvuucta9894hmoz01b.png)
![\implies \displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(\sin(x)\cos(h)-\sin(x)+\cos(x)\sin(h))/(h)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/ohm3m2p8fhtmokczjcl8o3dmduocp3tpf4.png)
![\implies \displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(\sin(x)(\cos(h)-1)+\cos(x)\sin(h))/(h)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/gwhd7as89ojacusp24tn4bwke6n7k67mz2.png)
Separate the sin(x) and cos(x) terms into two fractions:
![\implies \displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(\sin(x)(\cos(h)-1))/(h)+(\cos(x)\sin(h))/(h)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/tnhcspy70e3rza46rk399ovr6tc31o03pm.png)
When h gets really small, we can use the small angle approximation to rewrite cos(h).

![\implies \displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(\sin(x)\left(1-(1)/(2)h^2-1\right))/(h)+(\cos(x)\cdot h)/(h)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/r67d4snqu3es56wt5da0qlox8nrz07mvm8.png)
![\implies \displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[(\sin(x)\left(-(1)/(2)h^2\right))/(h)+(\cos(x)\cdot h)/(h)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/43rlu0gk39hdgnc0eny61ltjmq1qpnuc05.png)
Cancel the common factor, h:
![\implies \displaystyle \frac{\text{d}y}{\text{d}x}=\lim_(h \to 0) \left[-(1)/(2)h\sin(x)+\cos(x)\right]](https://img.qammunity.org/2024/formulas/mathematics/college/eugotx8il5n4s4js22x5zxg5dym5p8u3h8.png)
As h → 0, the first term → 0:
