Step-by-step explanation:
a) To determine the position of the snowboarder when t = 4 seconds, we can substitute t = 4 into the equation x = 0.5t^3 + 6t^2 + 3t:
x = 0.5 * 4^3 + 6 * 4^2 + 3 * 4
x = 64 + 96 + 12
x = 172
So when t = 4 seconds, the snowboarder's position is 172 meters.
b) To determine the velocity of the snowboarder when t = 4 seconds, we'll need to find the first derivative of the displacement function x = 0.5t^3 + 6t^2 + 3t with respect to time:
dx/dt = 3 * 0.5 * t^2 + 2 * 6 * t + 3
Next, we can substitute t = 4 into this expression to find the velocity when t = 4 seconds:
dx/dt = 3 * 0.5 * 4^2 + 2 * 6 * 4 + 3
dx/dt = 72 + 48 + 3
dx/dt = 123
So the velocity of the snowboarder when t = 4 seconds is 123 meters per second.
c) To determine the acceleration of the snowboarder when t = 4 seconds, we'll need to find the second derivative of the displacement function x = 0.5t^3 + 6t^2 + 3t with respect to time:
d^2x/dt^2 = 6 * 0.5 * t + 2 * 6
Next, we can substitute t = 4 into this expression to find the acceleration when t = 4 seconds:
d^2x/dt^2 = 6 * 0.5 * 4 + 2 * 6
d^2x/dt^2 = 24 + 12
d^2x/dt^2 = 36
So the acceleration of the snowboarder when t = 4 seconds is 36 meters per second squared.