76.3k views
1 vote
Find A-¹, if A =
23
32

Find A-¹, if A = 23 32-example-1

1 Answer

2 votes

Given the matrix,
\begin{bmatrix}2 & 3 \\3 & 2 \end{bmatrix}, find its inverse.

First we need to find its determinant which can be done by using the following formula,


det=\begin{bmatrix}a & b \\c & d \end{bmatrix}=ad-cb

Lets call
\begin{bmatrix}2 & 3 \\3 & 2 \end{bmatrix} matrix "A."

So,


detA=(2)(2)-(3)(3)


\Longrightarrow detA=4-9


\Longrightarrow detA=-5

We now have the determinant, we can now use the following formula to determine the inverse matrix,


A^(-1) =(1)/(detA) \begin{bmatrix}d & -b \\-c & a \end{bmatrix}


A^(-1) =-(1)/(5) \begin{bmatrix}2 & -3 \\-3 & 2 \end{bmatrix}


\Longrightarrow A^(-1) = \begin{bmatrix}2(-(1)/(5)) & -3(-(1)/(5)) \\-3(-(1)/(5)) & 2(-(1)/(5)) \end{bmatrix}


\Longrightarrow A^(-1) = \begin{bmatrix}-(2)/(5) & (3)/(5) \\(3)/(5) & -(2)/(5)\end{bmatrix} \therefore \ Sol.

*Note* I went a few more steps than the question needed. If you back up two steps on my answer is where they stopped. The last option is correct.

User Picker
by
8.4k points

No related questions found