76.3k views
1 vote
Find A-¹, if A =
23
32

Find A-¹, if A = 23 32-example-1

1 Answer

2 votes

Given the matrix,
\begin{bmatrix}2 & 3 \\3 & 2 \end{bmatrix}, find its inverse.

First we need to find its determinant which can be done by using the following formula,


det=\begin{bmatrix}a & b \\c & d \end{bmatrix}=ad-cb

Lets call
\begin{bmatrix}2 & 3 \\3 & 2 \end{bmatrix} matrix "A."

So,


detA=(2)(2)-(3)(3)


\Longrightarrow detA=4-9


\Longrightarrow detA=-5

We now have the determinant, we can now use the following formula to determine the inverse matrix,


A^(-1) =(1)/(detA) \begin{bmatrix}d & -b \\-c & a \end{bmatrix}


A^(-1) =-(1)/(5) \begin{bmatrix}2 & -3 \\-3 & 2 \end{bmatrix}


\Longrightarrow A^(-1) = \begin{bmatrix}2(-(1)/(5)) & -3(-(1)/(5)) \\-3(-(1)/(5)) & 2(-(1)/(5)) \end{bmatrix}


\Longrightarrow A^(-1) = \begin{bmatrix}-(2)/(5) & (3)/(5) \\(3)/(5) & -(2)/(5)\end{bmatrix} \therefore \ Sol.

*Note* I went a few more steps than the question needed. If you back up two steps on my answer is where they stopped. The last option is correct.

User Picker
by
7.9k points