160,496 views
26 votes
26 votes
Find Sin A, Cos A, Sin B, and Cos B for the following. Enter answers as fractions in simplest form, not decimals. No radical numbers for Denominator

Find Sin A, Cos A, Sin B, and Cos B for the following. Enter answers as fractions-example-1
User Ian Kershaw
by
2.8k points

1 Answer

24 votes
24 votes

The Pythagorean theorem states:


c^2=a^2+b^2

where a and b are the legs and c is the hypotenuse of a right triangle.

Substituting with b = 5, and c = 5√3, and solving for a (opposite side to angle A):


\begin{gathered} (5\sqrt[]{3})^2=a^2+5^2 \\ 5^2(\sqrt[]{3})^2=a^2+25 \\ 25\cdot3=a^2+25 \\ 75-25=a^2 \\ \sqrt[]{50}=a \\ \sqrt[]{25}\cdot\sqrt[]{2}=a \\ 5\sqrt[]{2}=a \end{gathered}

By definition:


\sin (angle)=\frac{\text{opposite}}{\text{hypotenuse}}

Considering angle A, the opposite side is 5√2 and the hypotenuse is 5√3. Substituting with this information, we get:


\begin{gathered} \sin A=\frac{5\sqrt[]{2}}{5\sqrt[]{3}} \\ \sin A=\frac{\sqrt[]{2}}{\sqrt[]{3}}\cdot\frac{\sqrt[]{3}}{\sqrt[]{3}} \\ \sin A=\frac{\sqrt[]{2\cdot3}}{(\sqrt[]{3})^2} \\ \sin A=\frac{\sqrt[]{6}}{3} \end{gathered}

Considering angle B, the opposite side is 5 and the hypotenuse is 5√3. Substituting with this information, we get:


\begin{gathered} \sin B=\frac{5}{5\sqrt[]{3}} \\ \sin B=\frac{1}{\sqrt[]{3}}\cdot\frac{\sqrt[]{3}}{\sqrt[]{3}} \\ \sin B=\frac{\sqrt[]{3}}{3} \end{gathered}

By definition:


\cos (angle)=\frac{\text{adjacent}}{\text{hypotenuse}}

Considering angle A, the adjacent side is 5 and the hypotenuse is 5√3. Substituting with this information, we get:


\cos A=\frac{5}{5\sqrt[]{3}}=\frac{\sqrt[]{3}}{3}

Considering angle B, the adjacent side is 5√2 and the hypotenuse is 5√3. Substituting with this information, we get:


\cos B=\frac{5\sqrt[]{2}}{5\sqrt[]{3}}=\frac{\sqrt[]{6}}{3}

User Shawneen
by
3.0k points