229k views
0 votes
The speed of a molecule in a uniform gas at equilibrium is a random variable V whose pdf is given by f(v)={kv2e−bv2,v>00, else where,where k is an appropriate constant and b depends on the absolute temperature and mass of the molecule, m, but we will consider b to be known.(a) Calculate k so that f(v) forms a proper pdf.(b) Find the pdf of the kinetic energy of the molecule W, where W=mV2/2.

User Iwiznia
by
8.3k points

1 Answer

3 votes


a) To calculate k so that f(v) forms a proper pdf, we need to make sure that the integral of f(v) over all values of v is equal to 1. This means that we need to solve the following equation:

∫f(v)dv = 1

We can do this by substituting in the values for f(v) and b, and then solving for k:

∫kv2e−bv2dv = 1

After solving this equation, we can find that k = 1/(2b3/2).

b) To find the pdf of the kinetic energy of the molecule W, we need to use the following equation:

f(w)=f(v)*|dv/dw|

We can then substitute in the values for f(v) and b, and then solve for the pdf of W:

f(w) = kv2e−bv2*|2mv/2w|

After solving this equation, we can find that the pdf of W is given by f(w) = k/2b3/2w2e−b(m/2w)2.
User Zachiah
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories