147k views
5 votes
ABCD is a parallelogram.

The diagonals of ABCD intersect at O.
OA = a and OB = b
a) Express the vector CA in terms of a.
b) Express the vector AB in terms of a and b.
c) Express the vector BC in terms of a and b.

User Simendsjo
by
8.9k points

1 Answer

4 votes

Answer:


\textsf{a)} \quad \overrightarrow{CA} =2\textbf{a}


\textsf{b)} \quad \overrightarrow{AB} =\textbf{b}-\textbf{a}


\textsf{c)} \quad \overrightarrow{BC} =-\textbf{a}-\textbf{b}

Explanation:

A parallelogram is a quadrilateral where opposite sides are equal in length and parallel to each other.

The diagonals of a parallelogram are not equal in length, but they bisect each other (divide into two equal parts).

Therefore, if OA = a then CO = a.

Similarly, if OB = b then DO = b.

Part (a)

Express the vector CA in terms of a:


\begin{aligned}\overrightarrow{CA} &= \overrightarrow{CO} + \overrightarrow{OA}\\&=\textbf{a}+\textbf{a}\\&=2\textbf{a}\end{aligned}

Part (b)

Express the vector AB in terms of a and b:


\begin{aligned}\overrightarrow{AB} &= \overrightarrow{AO} + \overrightarrow{OB}\\&= -\overrightarrow{OA} + \overrightarrow{OB}\\&= \overrightarrow{OB}-\overrightarrow{OA}\\&=\textbf{b}-\textbf{a}\end{aligned}

Part (c)

Express the vector BC in terms of a and b:


\begin{aligned}\overrightarrow{BC} &= \overrightarrow{BO} + \overrightarrow{OC}\\&= -\overrightarrow{OB} - \overrightarrow{CO}\\&= -\overrightarrow{CO}-\overrightarrow{OB}\\&=-\textbf{a}-\textbf{b}\end{aligned}

ABCD is a parallelogram. The diagonals of ABCD intersect at O. OA = a and OB = b a-example-1
User Enrique
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories