Answer: The expression (6-√)(15-√) can be simplified by using the distributive property of multiplication over addition:
(6-√)(15-√) = 6 * 15 + 6 * (-√) + (-√) * 15 + (-√) * (-√)
Expanding the first two terms:
6 * 15 = 90
6 * (-√) = -6√
Next, we'll use the identity for the product of two square roots:
(-√) * 15 + (-√) * (-√) = 15√ - √^2
Since the square root of a positive number is positive, √^2 = √. So:
15√ - √^2 = 15√ - √
Putting everything together:
(6-√)(15-√) = 90 - 6√ + 15√ - √
Combining like terms:
(6-√)(15-√) = 90 + 9√
So, the expression (6-√)(15-√) without a perfect square factor in the radicand is:
(6-√)(15-√) = 90 + 9√
Therefore, the answer is:
(6-√)(15-√) = A. 35 + 9√.
Step-by-step explanation: