195k views
5 votes
Find the remainder 4x^3-8x^2+3x-7/6 when divided by 4x-3

1 Answer

5 votes

Answer: To find the remainder when 4x^3 - 8x^2 + 3x - 7 is divided by 4x - 3, we can use polynomial long division.

Here's how:

4x^3 - 8x^2 + 3x - 7

÷ 4x - 3

4x^2

4x^2

______

0x^3 + 4x^2 - 8x^2 + 3x - 7

-4x^2 -12x^2

-12x^2

-12x^2

________

0x^2 - 8x^2 + 3x - 7

+12x^2 -36x^2

-24x^2

-24x^2

________

-24x^2 + 3x - 7

+24x^2 +72x^2

48x^2

48x^2

________

48x^2 - 3x + 1

-48x^2 +144x^2

192x^2

________

192x^2 + 1

The remainder is 192x^2 + 1.

Explanation:

User Rpitting
by
8.6k points