Answer:
- 6x³ + 35x² - 150x + 250
Explanation:
note that i² = - 1
(x + 5i)(x - 5i)(x - 3 - i)(x - 3 + i) ← expand the first pair of factors using FOIL
= ( x² - 5ix + 5ix - 25i²)((x - 3) - i)((x - 3) + i) ← expand second pair using FOIL
= (x² - 25(- 1))((x - 3)²+ i(x - 3) - i(x - 3) - i²)
= (x² + 25)(x² - 6x + 9 - (- 1))
= (x² + 25)(x² - 6x + 9 + 1)
= (x² + 25)(x² - 6x + 10)
each term in the second factor is multiplied by each term in the first factor
= x²(x² - 6x + 10) + 25(x² - 6x + 10) ← distribute parenthesis
=
- 6x³ + 10x² + 25x² - 150x + 250 ← collect like terms
=
- 6x³ + 35x² - 150x + 250