is
and
is
.
To find the lengths of sides AC and BC in triangle ABC, we can use the Law of Sines.
The Law of Sines states:
![\[ (\sin A)/(a) = (\sin B)/(b) = (\sin C)/(c) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/d6tvh5psnolis0y0uvkz0kh5wi77bm7agl.png)
In triangle ABC, given that
,
, and
, we can find side AC using the Law of Sines:
![\[ (\sin \angle BAC)/(AB) = (\sin \angle BCA)/(AC) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/8rza98t1lz6ulnwnw57hfgmse4f1ovc9zm.png)
Substitute the given values:
![\[ (\sin 30^\circ)/(30) = (\sin 45^\circ)/(AC) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/o8vkydlbnve5hid8xrazyy49g9oc7rhety.png)
Now, solve for AC:
![\[ AC = (30 \cdot \sin 45^\circ)/(\sin 30^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/krllr7q3kua35xcgm8z0d41r323mjcqzck.png)
![\[ AC = (30 \cdot (√(2))/(2))/((1)/(2)) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/u5l6zb76nv0s8djm4ptevistfo3o5twj14.png)
![\[ AC = 30 \cdot √(2) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/7iw2mtjmxco6wew4ifqu6ra3yr5vr3ed63.png)
So,
.
Now, to find side BC, we can use the Law of Sines again:
![\[ (\sin \angle ABC)/(AC) = (\sin \angle BCA)/(BC) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/tm26h54xaah2iis42fy7fya48m0p2r7wnv.png)
![\[ (\sin (180^\circ - \angle BAC - \angle BCA))/(AC) = (\sin 45^\circ)/(BC) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/sfqvb4wz5lj1t1e226x6mvnl9xpfomfmeq.png)
![\[ (\sin 105^\circ)/(30√(2)) = (√(2))/(BC) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/7cqh4a63a2kk2o9vh0w532fu8aqlv91t5g.png)
Now, solve for BC:
![\[ BC = (30√(2) \cdot √(2))/(\sin 105^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/fjlmupes8ek4rh4171thyuqz8yxehoq9yo.png)
![\[ BC = (60)/(\sin 105^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/u8kg2yqlrejas0xoyb3xyuu0u49h0t7b61.png)
Using a calculator to find the exact value:
![\[ BC \approx (60)/(\sin 105^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/xzwu5pt14tivz0dq6w3p9k5qdkzceqeymn.png)
So,
is the reciprocal of the sine of
:
![\[ BC \approx (60)/(\sin 105^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/middle-school/xzwu5pt14tivz0dq6w3p9k5qdkzceqeymn.png)
Therefore,
is
and
is
.