143k views
3 votes
Show how to find the sine, cos, and tangent of 30° given that cos60°=1/2.

1 Answer

4 votes

Answer:

Explanation:

Given that cos(60°) = 1/2, we can use trigonometric identities to find the sine, cosine, and tangent of 30°:

Sine of 30°:

sin(30°) = √[1 - cos^2(30°)] = √[1 - (cos(60°)/2)^2] = √[1 - 1/4] = √3/2.

Cosine of 30°:

cos(30°) = √[1 - sin^2(30°)] = √[1 - (√3/2)^2] = √[1 - 3/4] = √1/4.

Tangent of 30°:

tan(30°) = sin(30°) / cos(30°) = (√3/2) / (√1/4) = √3.

So, the sine of 30° is √3/2, the cosine of 30° is √1/4, and the tangent of 30° is √3.

User Tohava
by
7.7k points