196k views
5 votes
Solve the initial value problem
dx/dt−4x=cos(5t)
with x(0)=1.
x(t) = ?

User Mlubin
by
7.5k points

1 Answer

5 votes

We are given the following differential equation,
(dx)/(dt)-4x=cos(5t), with the initial condition
x(0)=1. This is a linear DE in the form,
(dx)/(dt)+P(t)x=Q(t), where
\mu(t)=e^{\int\ {P(t)} \, dt }.

First, finding
\mu(t).


\Longrightarrow\mu(t)=e^{\int\ {P(t)} \, dt }\Longrightarrow\mu(t)=e^{\int\ {-4} \, dt }


\mu(t)=e^(-4t )

Multiply the DE by
\mu(t).


\Longrightarrow(dx)/(dt)-4x=cos(5t)\Longrightarrow e^(-4t) [(dx)/(dt)-4x=cos(5t)]


\Longrightarrow (e^(-4t)) (dx)/(dt)-(e^(-4t))4x=(e^(-4t))cos(5t)


\Longrightarrow e^(-4t) (dx)/(dt)-4e^(-4t)x=e^(-4t)cos(5t)

Verify that the L.H.S is a product rule of
e^(-4t)x.


\Longrightarrow (d)/(dt)[e^(-4t)x ] =(e^(-4t)*-4)x+(e^(-4t))((dx)/(dt) )


\Longrightarrow (d)/(dt)[e^(-4t)x ] =-4e^(-4t)x+e^(-4t)(dx)/(dt)

This matches, so we can move forward by integrating both sides of the DE.


\int\ {[e^(-4t)x ]'} \, =\int\ {e^(-4t)cos(5t)} \, dt

The integral on the R.H.S is pretty nasty to do using integration by parts and u-sub. I will use a table of integrals.


\int\ {e^(ax)cos(bx) } \, dx=(e^(ax)(acos(bx)+bsin(bx)))/(a^2+b^2)

Let
a=-4 and
b=5


\int\ {[e^(-4t)x ]'} \, =\int\ {e^(-4t)cos(5t)} \, dt


\Longrightarrow e^(-4t)x = (e^(-4t)(-4cos(5t)+5sin(5t)))/((-4)^2+(5)^2)+C


\Longrightarrow e^(-4t)x = (e^(-4t)(-4cos(5t)+5sin(5t)))/(41) +C

Now for the initial condition,
x(0)=1.


\Longrightarrow e^(-4(0))(1) = (e^(-4(0))(-4cos(5(0))+5sin(5(0))))/(41) +C


\Longrightarrow (1)(1) = ((1)(-4(1)+(0)))/(41) +C


\Longrightarrow 1 = -(4)/(41) +C


\Longrightarrow 1+(4)/(41) = C


\Longrightarrow C=(45)/(41)

Now we have,
e^(-4t)x = (e^(-4t)(-4cos(5t)+5sin(5t)))/(41) +(45)/(41), solve for x.


\Longrightarrow x = ((e^(-4t)(-4cos(5t)+5sin(5t)))/(41))/( e^(-4t)) +((45)/(41))/(e^(-4t))


\Longrightarrow x = ((-4cos(5t)+5sin(5t)))/(41)} +(45e^(4t))/(41)

Thus, the answer to the given differential equation with an initial condition is,
x = ((-4cos(5t)+5sin(5t)))/(41)} +(45e^(4t))/(41).

User Kwex
by
7.4k points