196k views
5 votes
Solve the initial value problem
dx/dt−4x=cos(5t)
with x(0)=1.
x(t) = ?

User Mlubin
by
8.2k points

1 Answer

5 votes

We are given the following differential equation,
(dx)/(dt)-4x=cos(5t), with the initial condition
x(0)=1. This is a linear DE in the form,
(dx)/(dt)+P(t)x=Q(t), where
\mu(t)=e^{\int\ {P(t)} \, dt }.

First, finding
\mu(t).


\Longrightarrow\mu(t)=e^{\int\ {P(t)} \, dt }\Longrightarrow\mu(t)=e^{\int\ {-4} \, dt }


\mu(t)=e^(-4t )

Multiply the DE by
\mu(t).


\Longrightarrow(dx)/(dt)-4x=cos(5t)\Longrightarrow e^(-4t) [(dx)/(dt)-4x=cos(5t)]


\Longrightarrow (e^(-4t)) (dx)/(dt)-(e^(-4t))4x=(e^(-4t))cos(5t)


\Longrightarrow e^(-4t) (dx)/(dt)-4e^(-4t)x=e^(-4t)cos(5t)

Verify that the L.H.S is a product rule of
e^(-4t)x.


\Longrightarrow (d)/(dt)[e^(-4t)x ] =(e^(-4t)*-4)x+(e^(-4t))((dx)/(dt) )


\Longrightarrow (d)/(dt)[e^(-4t)x ] =-4e^(-4t)x+e^(-4t)(dx)/(dt)

This matches, so we can move forward by integrating both sides of the DE.


\int\ {[e^(-4t)x ]'} \, =\int\ {e^(-4t)cos(5t)} \, dt

The integral on the R.H.S is pretty nasty to do using integration by parts and u-sub. I will use a table of integrals.


\int\ {e^(ax)cos(bx) } \, dx=(e^(ax)(acos(bx)+bsin(bx)))/(a^2+b^2)

Let
a=-4 and
b=5


\int\ {[e^(-4t)x ]'} \, =\int\ {e^(-4t)cos(5t)} \, dt


\Longrightarrow e^(-4t)x = (e^(-4t)(-4cos(5t)+5sin(5t)))/((-4)^2+(5)^2)+C


\Longrightarrow e^(-4t)x = (e^(-4t)(-4cos(5t)+5sin(5t)))/(41) +C

Now for the initial condition,
x(0)=1.


\Longrightarrow e^(-4(0))(1) = (e^(-4(0))(-4cos(5(0))+5sin(5(0))))/(41) +C


\Longrightarrow (1)(1) = ((1)(-4(1)+(0)))/(41) +C


\Longrightarrow 1 = -(4)/(41) +C


\Longrightarrow 1+(4)/(41) = C


\Longrightarrow C=(45)/(41)

Now we have,
e^(-4t)x = (e^(-4t)(-4cos(5t)+5sin(5t)))/(41) +(45)/(41), solve for x.


\Longrightarrow x = ((e^(-4t)(-4cos(5t)+5sin(5t)))/(41))/( e^(-4t)) +((45)/(41))/(e^(-4t))


\Longrightarrow x = ((-4cos(5t)+5sin(5t)))/(41)} +(45e^(4t))/(41)

Thus, the answer to the given differential equation with an initial condition is,
x = ((-4cos(5t)+5sin(5t)))/(41)} +(45e^(4t))/(41).

User Kwex
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories