Answer:
True
Explanation:
The identity is true.
Starting with the left-hand side, we have:
sin(-x) + cot(-x) cos(-x) = sin(-x) + (1/tan(-x)) cos(-x)
Using the trigonometric identity for sin(-x) and cos(-x), we have:
sin(-x) + (1/tan(-x)) cos(-x) = -sin(x) + (1/tan(-x)) (-sin(x))
Using the identity for tan(-x), we have:
-sin(x) + (1/tan(x)) (-sin(x)) = -sin(x) + (-cos(x)/sin(x)) (-sin(x))
Simplifying and using the definition of csc, we have:
-sin(x) + (-cos(x)/sin(x)) (-sin(x)) = -sin(x) - cos(x) = -csc(x)
Thus, the identity sin(-x) + cot(-x) cos(-x) = -csc(x) is true.
Hope this helps!