234k views
1 vote
Simplify sin x(cot x-csc x)+1

User Nishit
by
7.2k points

1 Answer

1 vote

Answer:


\displaystyle{\sin x \left(\cot x - \csc x\right)+1 = \cos x}

Explanation:

The following expression can be rewritten as:


\displaystyle{\sin x \left((\cos x)/(\sin x) -(1)/(\sin x)\right) +1}

We know that:


\displaystyle{\cot x = (1)/(\tan x)}

and also:


\displaystyle{\tan x = (\sin x )/(\cos x)}

Hence:


\displaystyle{\cot x = (1)/( (\sin x)/(\cos x)) = (\cos x)/(\sin x)}

We also know that:


\displaystyle{\csc x = (1)/(\sin x)}

Thus, how we can rewrite into the form of:


\displaystyle{\sin x \left((\cos x)/(\sin x) -(1)/(\sin x)\right) +1}

Expand sin(x) in:


\displaystyle{\sin x \cdot (\cos x)/(\sin x) + \sin x \cdot \left(-(1)/(\sin x)\right) + 1}\\\\\displaystyle{= \cos x - 1 + 1}\\\\\displaystyle{= \cos x}

Thus:


\displaystyle{\sin x \left(\cot x - \csc x\right)+1 = \cos x}

User Ajdams
by
7.5k points