102k views
0 votes
If x1 and x2 are solutions to 3x^2+15x+9=0 quadratic equation, then

x1+x2=

1 Answer

2 votes

Answer:


x_1 + x_2 = \boxed{-5}

Explanation:


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\implies x_(1,\:2)=(-b)/(2a)\pm\frac{\sqrt{b^(2)-4ac}}{2a}

Let's have


x_(1)=(-b)/(2a)+\frac{\sqrt{b^(2)-4ac}}{2a}\


x_(2)=(-b)/(2a)-\frac{\sqrt{b^(2)-4ac}}{2a}


x_1 + x_2 =(-b)/(2a)+\frac{\sqrt{b^(2)-4ac}}{2a} + (-b)/(2a)-\frac{\sqrt{b^(2)-4ac}}{2a}\\


\frac{\sqrt{b^(2)-4ac}}{2a} - \frac{\sqrt{b^(2)-4ac}}{2a} = 0\\\\

Leaving us with

(-b)/(2a) + (-b)/(2a)\\\\\implies 2 \cdot \left((-b)/(2a)\right)\\\\\implies -(b)/(a)\\\\

The given equation is

3x^2+15x+9=0

Here a = 3, b = 15

So

-(b)/(a) = --(15)/(3) = -5\\

Answer:

x_1 + x_2 = \boxed{-5}


User Fallout
by
7.2k points