102k views
0 votes
If x1 and x2 are solutions to 3x^2+15x+9=0 quadratic equation, then

x1+x2=

1 Answer

2 votes

Answer:


x_1 + x_2 = \boxed{-5}

Explanation:


\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}


x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)


\implies x_(1,\:2)=(-b)/(2a)\pm\frac{\sqrt{b^(2)-4ac}}{2a}

Let's have


x_(1)=(-b)/(2a)+\frac{\sqrt{b^(2)-4ac}}{2a}\


x_(2)=(-b)/(2a)-\frac{\sqrt{b^(2)-4ac}}{2a}


x_1 + x_2 =(-b)/(2a)+\frac{\sqrt{b^(2)-4ac}}{2a} + (-b)/(2a)-\frac{\sqrt{b^(2)-4ac}}{2a}\\


\frac{\sqrt{b^(2)-4ac}}{2a} - \frac{\sqrt{b^(2)-4ac}}{2a} = 0\\\\

Leaving us with

(-b)/(2a) + (-b)/(2a)\\\\\implies 2 \cdot \left((-b)/(2a)\right)\\\\\implies -(b)/(a)\\\\

The given equation is

3x^2+15x+9=0

Here a = 3, b = 15

So

-(b)/(a) = --(15)/(3) = -5\\

Answer:

x_1 + x_2 = \boxed{-5}


User Fallout
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories