Explanation:
a)
-sin(2x) = cos(2x)
sin(2x) = cos(2x)
2sin(x)cos(x) = cos(2x)
2sin(x)cos(x) = 1 or -1
sin(x) = +/-√(1/2) or sin(x) = 0
x = (2n+1)π/4 or x = nπ
b)
3 tan(x) = 2 sin(2x)
tan(x) = 2/3 sin(2x)
sin(2x) = 3 tan(x)/2
cos^2(x) = (1 - sin^2(x)) = (1 - (3 tan(x)/2)^2)/4
x = nπ/2 + arctan(2√(2)/3) or x = nπ/2 + arctan(-2√(2)/3)
c)
sec(x) cos(3x) = 0
cos(x) = 0 or cos(3x) = 0
x = nπ/2 or x = (3n+1)π/6
d)
1 - cos(x) = 2 - 2sin^2(x)
cos(x) = 2sin^2(x) - 1
2sin^2(x) = cos(x) + 1
sin^2(x) = (cos(x) + 1)/2
sin(x) = +/- √((cos(x) + 1)/2)
e)
4cos^4(x) - 5cos^2(x) + 1 = 0
cos^2(x) = (1 ± √(5))/2
x = arccos(±√((1 + √(5))/2)) or x = arccos(±√((1 - √(5))/2))
Note: n is any integer in the given domain.