Answer:
4x² + 4x + 9 = 0 , has no real solutions
Explanation:
given a quadratic equation in standard form
ax² + bx + c = 0 ( a ≠ 0 )
then the nature of the solutions can be determined using the discriminant.
Δ = b² - 4ac
• if b² - 4ac > 0 , then real solutions
• if b² - 4ac = 0 , then real and equal solutions
• if b² - 4ac < 0 , then no real solutions
4x² + 4x + 9 = 0 ← in standard form
with a = 4, b = 4 , c = 9
b² - 4ac
= 4² - (4 × 4 × 9)
= 16 - 144
= - 128 ← no real solutions
------------------------------------------
- 4x² + 56x - 196 = 0 ← in standard form
with a = - 4 , b = 56 , c = - 196
b² - 4ac
= 56² - (4 × - 4 × - 196)
= 3136 - 3136
= 0 ← has real solutions
-------------------------------------------
- 5x² - 10x + 10 = 0 ← in standard form
with a = - 5 , b = - 10 , c = 10
b² - 4ac
= (- 10)² - (4 × - 5 × 10)
= 100 - (- 200)
= 100 + 200
= 300 ← has real solutions