125k views
1 vote
A line passes through the points (-3, -1) and (-5, 4). what is the equation of this line?

User Esoni
by
7.8k points

1 Answer

4 votes


(\stackrel{x_1}{-3}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{-5}~,~\stackrel{y_2}{4}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{4}-\stackrel{y1}{(-1)}}}{\underset{\textit{\large run}} {\underset{x_2}{-5}-\underset{x_1}{(-3)}}} \implies \cfrac{4 +1}{-5 +3} \implies \cfrac{ 5 }{ -2 } \implies - \cfrac{ 5 }{ 2 }


\begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-1)}=\stackrel{m}{- \cfrac{ 5 }{ 2 }}(x-\stackrel{x_1}{(-3)}) \implies y +1 = - \cfrac{ 5 }{ 2 } ( x +3) \\\\\\ y+1=- \cfrac{ 5 }{ 2 }x-\cfrac{15}{2}\implies y=- \cfrac{ 5 }{ 2 }x-\cfrac{15}{2}-1\implies {\Large \begin{array}{llll} y=- \cfrac{ 5 }{ 2 }x-\cfrac{17}{2} \end{array}}

User Kodeaben
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories