The equation "i12 + 1 = 1 - i / (1 + i^2)" can be simplified as follows:
i^12 + 1 = 1 - i / (1 + i^2)
Expanding the denominator on the right side:
i^12 + 1 = 1 - i / (1 - (-1))
i^12 + 1 = 1 - i / 2
Rearranging the equation:
i^12 = -1/2 + i/2
So, the equation i^12 + 1 = 1 - i / (1 + i^2) can be simplified to i^12 = -1/2 + i/2