96.1k views
3 votes
Write each expression as a fraction and then reduce the fraction


(1 + {a }^(3) ) / (1 + a)


1 Answer

3 votes


\textit{difference and sum of cubes} \\\\ a^3+b^3 = (a+b)(a^2-ab+b^2) ~\hfill a^3-b^3 = (a-b)(a^2+ab+b^2) \\\\[-0.35em] ~\dotfill\\\\ (1+a^3)/ (1+a)\implies \cfrac{1+a^3}{1+a}\implies \cfrac{1^3+a^3}{1+a} \\\\\\ \cfrac{~~\begin{matrix} (1+a) \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~(1^2 - (a)(1)+a^2)}{~~\begin{matrix} 1+a \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}\implies 1^2 - (a)(1)+a^2\implies \boxed{a^2-a+1}

User Do Will
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories