Answer:
![x+3>7\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x>4\:\\ \:\mathrm{Interval\:Notation:}&\:\left(4,\:\infty \:\right)\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/ztwxgk75n1rzyf3svzsi7v58b5g5322we1.png)
The solution line graph is also attached.
Explanation:
Given
The inequality is given by
![x+3>7](https://img.qammunity.org/2022/formulas/mathematics/college/4xze4uxv4qjpfuknk2hbtmlcuql28umfeu.png)
To determine
What is the solution to the inequality?
Solving the given inequality
![x+3>7](https://img.qammunity.org/2022/formulas/mathematics/college/4xze4uxv4qjpfuknk2hbtmlcuql28umfeu.png)
Subtract 3 from both sides
![x+3-3>7-3](https://img.qammunity.org/2022/formulas/mathematics/college/2x7z3vtn5f50fseoyysn80fzfrim9rnlc5.png)
Simplify
![x>4](https://img.qammunity.org/2022/formulas/mathematics/college/uoqd4rz8d2jfqhx8qk7pga61wcimqjgd3k.png)
Thus,
![x+3>7\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x>4\:\\ \:\mathrm{Interval\:Notation:}&\:\left(4,\:\infty \:\right)\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/college/ztwxgk75n1rzyf3svzsi7v58b5g5322we1.png)
The solution line graph is also attached.