220k views
4 votes
Solve for x using logarithms.


3^(2-3x) = 4^(2x+1)

1 Answer

1 vote

Answer:


\large\boxed{\sf 0.133 }

Explanation:

The given equation to us is ,


\longrightarrow 3^(2-3x)= 4^(2x+1) \\

Take log to base 10 on both sides,


\longrightarrow \log_(10) 3^(2-3x)= \log_(10) 4^(2x+1) \\

Now recall that,
\log a^m = m\ log \ a


\longrightarrow (2-3x) \log_(10) 3 = (2x+1)(\log_(10) 4)\\

We can write it as ,


\longrightarrow (2-3x) \log_(10)3=(2x+1)\log_(10)2^2 \\

Again using the property mentioned above,


\longrightarrow (2-3x)\log_(10)3 = 2(2x+1)\log_(10) 2 \\


\longrightarrow (2-3x)\log_(10)3 = (4x+2)\log_(10) 2 \\

Now we know that ,

  • log 3 = 0.477
  • log 2 = 0.301

On substituting the values, we have ,


\longrightarrow (2-3x)0.477 = (4x+2)0.301 \\

simplify by opening the brackets,


\longrightarrow 0.954 - 1.431x = 1.204x + 0.602 \\


\longrightarrow 1.204x + 1.431x = 0.954 - 0.602 \\


\longrightarrow 2.635x = 0.352 \\


\longrightarrow x =(0.352)/(2.635) \\


\longrightarrow \underline{\underline{ x = 0.133 }} \\

and we are done!

User Arjang
by
7.3k points