220k views
4 votes
Solve for x using logarithms.


3^(2-3x) = 4^(2x+1)

1 Answer

1 vote

Answer:


\large\boxed{\sf 0.133 }

Explanation:

The given equation to us is ,


\longrightarrow 3^(2-3x)= 4^(2x+1) \\

Take log to base 10 on both sides,


\longrightarrow \log_(10) 3^(2-3x)= \log_(10) 4^(2x+1) \\

Now recall that,
\log a^m = m\ log \ a


\longrightarrow (2-3x) \log_(10) 3 = (2x+1)(\log_(10) 4)\\

We can write it as ,


\longrightarrow (2-3x) \log_(10)3=(2x+1)\log_(10)2^2 \\

Again using the property mentioned above,


\longrightarrow (2-3x)\log_(10)3 = 2(2x+1)\log_(10) 2 \\


\longrightarrow (2-3x)\log_(10)3 = (4x+2)\log_(10) 2 \\

Now we know that ,

  • log 3 = 0.477
  • log 2 = 0.301

On substituting the values, we have ,


\longrightarrow (2-3x)0.477 = (4x+2)0.301 \\

simplify by opening the brackets,


\longrightarrow 0.954 - 1.431x = 1.204x + 0.602 \\


\longrightarrow 1.204x + 1.431x = 0.954 - 0.602 \\


\longrightarrow 2.635x = 0.352 \\


\longrightarrow x =(0.352)/(2.635) \\


\longrightarrow \underline{\underline{ x = 0.133 }} \\

and we are done!

User Arjang
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories