71.7k views
2 votes
Function A and Function B are linear functions

Function A and Function B are linear functions-example-1
User Ranieri
by
8.5k points

1 Answer

4 votes

to get the slope of any straight line, we simply need two points off of it, let's use those two in the picture below for Function A.


(\stackrel{x_1}{-8}~,~\stackrel{y_1}{-5})\qquad (\stackrel{x_2}{10}~,~\stackrel{y_2}{4}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{4}-\stackrel{y1}{(-5)}}}{\underset{\textit{\large run}} {\underset{x_2}{10}-\underset{x_1}{(-8)}}} \implies \cfrac{4 +5}{10 +8} \implies \cfrac{ 9 }{ 18 } \implies \cfrac{1 }{ 2 }\impliedby \stackrel{\textit{slope of}}{A} \\\\[-0.35em] ~\dotfill


y = \stackrel{\stackrel{m}{\downarrow }}{5}x-1\qquad \impliedby \begin{array} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}\qquad \stackrel{\textit{slope of}}{B} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill {\Large \begin{array}{llll} \stackrel{A}{\cfrac{1}{2}} ~~ < ~~ \stackrel{B}{5} \end{array}}~\hfill

Function A and Function B are linear functions-example-1
User Mochidino
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories