71.7k views
2 votes
Function A and Function B are linear functions

Function A and Function B are linear functions-example-1
User Ranieri
by
8.3k points

1 Answer

4 votes

to get the slope of any straight line, we simply need two points off of it, let's use those two in the picture below for Function A.


(\stackrel{x_1}{-8}~,~\stackrel{y_1}{-5})\qquad (\stackrel{x_2}{10}~,~\stackrel{y_2}{4}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{\textit{\large rise}} {\stackrel{y_2}{4}-\stackrel{y1}{(-5)}}}{\underset{\textit{\large run}} {\underset{x_2}{10}-\underset{x_1}{(-8)}}} \implies \cfrac{4 +5}{10 +8} \implies \cfrac{ 9 }{ 18 } \implies \cfrac{1 }{ 2 }\impliedby \stackrel{\textit{slope of}}{A} \\\\[-0.35em] ~\dotfill


y = \stackrel{\stackrel{m}{\downarrow }}{5}x-1\qquad \impliedby \begin{array} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}\qquad \stackrel{\textit{slope of}}{B} \\\\[-0.35em] ~\dotfill\\\\ ~\hfill {\Large \begin{array}{llll} \stackrel{A}{\cfrac{1}{2}} ~~ < ~~ \stackrel{B}{5} \end{array}}~\hfill

Function A and Function B are linear functions-example-1
User Mochidino
by
7.3k points