Answer: I am Not that good In Maths But here you go
Explanation:
Part A:
The population of a city in 2015 is 36,000 and it is increasing at 15% per year. We can model this using an exponential equation of the form:
P(z) = P0 * (1 + r)^z
Where:
P(z) is the population after z years
P0 is the initial population in 2015 (36,000)
r is the rate of growth (0.15)
z is the number of years since 2015
So the exponential equation that models the population is:
P(z) = 36,000 * (1 + 0.15)^z
Part B:
To find the population in 2020, we would substitute z = 5 (2020 - 2015) into the equation:
P(5) = 36,000 * (1 + 0.15)^5
P(5) = 36,000 * 1.15^5
Calculating this gives us a population of approximately 63,746 in 2020.
To obtain this answer, we used the exponential equation that models the population, P(z), where a represents the number of years since 2015, with the given information that population in 2015 was 36,000 and it's increasing at 15% per year and substitute the value of 5 for z.