121k views
2 votes
Solve the quadratic equation using the square root method:
-108 = (x-11)^2 +13

Solve the quadratic equation using the square root method: -108 = (x-11)^2 +13-example-1
User Frankster
by
7.5k points

1 Answer

2 votes

Answer:


\sf x=11+11i\\x=11-11i

Explanation:

Given quadratic equation:


\sf -108=(x-11)^2+13

Subtract 13 from both sides:


\implies \sf -108-13=(x-11)^2+13-13


\implies \sf -121=(x-11)^2

Switch sides:


\implies \sf (x-11)^2=-121


\textsf{For $(g(x))^2=f(a)$ the solutions are $g(x)=\pm√(f(a))$}


\implies \sf x-11=\pm √(-121)

Rewrite -121 as 11² · -1 :


\implies \sf x-11=\pm √(11^2 \cdot-1)


\textsf{Apply radical rule} \quad √(ab)=√(a)√(b):


\implies \sf x-11=\pm√(11^2) √(-1)


\implies \sf x-11=\pm11√(-1)


\textsf{Apply\;imaginary\;number\;rule}:\quad √(-1)=i


\implies \sf x-11=\pm11i

Add 11 to both sides:


\implies \sf x=11\pm11i

Therefore, the solutions are:


\implies \sf x=11+11i


\implies \sf x=11-11i

User Eugene Osovetsky
by
7.9k points