173k views
4 votes
NO LINKS!!

Solve each equation. Be sure to check for extraneous solutions. Part 1

h. 20(1/2)^x/3 = 5
i. 2e^(2n-5) + 4 = 36
j. log₉x + 2log₉4= log₉20

1 Answer

6 votes

Answer:


\textsf{h)} \quad x=6


\textsf{i)} \quad n = 2\ln 2+(5)/(2)


\textsf{j)} \quad x=(5)/(4)

Explanation:

Part h

Given equation:


20\left((1)/(2)\right)^{(x)/(3)} = 5

Divide both sides by 20:


\implies\left((1)/(2)\right)^{(x)/(3)} = (20)/(5)


\implies\left((1)/(2)\right)^{(x)/(3)} =(1)/(4)

Rewrite 1/4 as (1/2)²:


\implies\left((1)/(2)\right)^{(x)/(3)} =\left((1)/(2)\right)^2


\textsf{Apply exponent rule} \quad a^(f(x))=a^(g(x)) \implies f(x)=g(x)


\implies (x)/(3)=2

Multiply both sides by 6:


\implies x=6

Part i

Given equation:


2e^(2n-5) + 4= 36

Subtract 4 from both sides:


\implies 2e^(2n-5) = 32

Divide both sides by 2:


\implies e^(2n-5) = 16

Take natural logs of both sides:


\implies \ln e^(2n-5) = \ln 16


\textsf{Apply the power law}: \quad \ln x^n=n \ln x


\implies (2n-5)\ln e = \ln 16

Apply the law ln(e) = 1:


\implies 2n-5 = \ln 16

Rewrite 16 as 2⁴:


\implies 2n-5 = \ln 2^4


\implies 2n-5 = 4\ln 2

Add 5 to both sides:


\implies 2n = 4\ln 2+5

Divide both sides by 2:


\implies n = 2\ln 2+(5)/(2)

Part j

Given equation:


\log_9x + 2\log_94= \log_920


\textsf{Apply the log power law}: \quad n\log_ax=\log_ax^n


\implies \log_9x + \log_94^2= \log_920


\implies \log_9x + \log_916= \log_920


\textsf{Apply the log product law}: \quad \log_ax + \log_ay=\log_axy


\implies \log_916x= \log_920


\textsf{Apply the log equality law}: \quad \textsf{If $\log_ax=\log_ay$ then $x=y$}


\implies 16x=20

Divide both sides by 16:


\implies x=(20)/(16)

Simplify:


\implies x=(5)/(4)

User Nico Z
by
8.0k points