Answer:
k) x = 2
l) x = 6
Explanation:

Part k
![\begin{aligned}\log_7(x + 12) + \log_7(x + 1) &= \log_7(42)\\\log_7\left[(x + 12)(x+1)\right]&= \log_7(42)\\(x + 12)(x+1)&=42\\x^2+13x+12&=42\\x^2+13x-30&=0\\x^2+15x-2x-30&=0\\x(x+15)-2(x+15)&=0\\(x-2)(x+15)&=0\\\\\implies x&=2\\\implies x&=-15\end{aligned}](https://img.qammunity.org/2024/formulas/mathematics/college/vfd0jz2coet1yivv0n1bcx92j1buc6fjx2.png)
As logs of negative numbers cannot be taken, x = -15 is an extraneous solution. Therefore, the only valid solution is x = 2.
Part l
![\begin{aligned}\log_4(x + 3) + 1 &= 2\log_4(x)\\\log_4(x + 3) + \log_44 &= \log_4(x^2)\\\log_4\left[4(x + 3)\right] &= \log_4(x^2)\\4(x + 3)&=x^2\\4x+12&=x^2\\x^2-4x-12&=0\\x^2-6x+2x-12&=0\\x(x-6)+2(x-6)&=0\\(x+2)(x-6)&=0\\\\\implies x&=-2\\\implies x&=6\end{aligned}](https://img.qammunity.org/2024/formulas/mathematics/college/zewq42raz63f2d35w3bwhoq8ckwbipqgqx.png)
As logs of negative numbers cannot be taken, x = -2 is an extraneous solution. Therefore, the only valid solution is x = 6.