Answer:
v=-5 and v=3
Explanation:
We are given that
![v^2-15=-2v](https://img.qammunity.org/2022/formulas/mathematics/college/jvhpnbntjluquyhv0tync696r7hsnbw59o.png)
We have to find two solutions of quadratic equation.
![v^2+2v-15=0](https://img.qammunity.org/2022/formulas/mathematics/college/boovduknm1ya26nklctam8q22a15lmasr3.png)
Using addition property of equality
(By using factorization method)
![v(v+5)-3(v+5)=0](https://img.qammunity.org/2022/formulas/mathematics/college/6w2khwjw4f2z8i206ajb5xxj30w6s754fq.png)
![(v+5)(v-3)=0](https://img.qammunity.org/2022/formulas/mathematics/college/cd3vcq4n5rdlsossgo8tsg7s0y3h645krj.png)
Substitute each factor equal to 0
and
![v-3=0](https://img.qammunity.org/2022/formulas/mathematics/college/ct9b97zbmhxynqu623z3j198zobddoqgl8.png)
and
![v=3](https://img.qammunity.org/2022/formulas/mathematics/college/9svfp1kw2v0l6s30hy2s5464p0zep3cwz4.png)
Hence, two solutions of quadratic equation are
v=-5 and v=3