74.0k views
0 votes
Find derivative
f'(x) =​

Find derivative f'(x) =​-example-1

1 Answer

4 votes

Answer:


\displaystyle{f'(x)=(9)/(4)x\left(8x^4+x^2-1\right)^{(1)/(8)}(16x^2+1)}

Explanation:

Given the function
\displaystyle{f(x)=\sqrt[8]{\left(8x^4+x^2-1\right)^9}}. We can rewrite the function in exponential form as
\displaystyle{f(x)=\left(8x^4+x^2-1\right)^{(9)/(8)}}. Here, we have to know the power rules and the chain rule:


\displaystyle{f(x) = u^n \to f'(x) = nu^(n-1) \cdot (du)/(dx)}

Therefore, from the above formula, we will have:


\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(9)/(8)-1} \cdot (d)/(dx)\left(8x^4+x^2-1\right)}\\\\\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(9)/(8)-(8)/(8)} \cdot (d)/(dx)\left(8x^4+x^2-1\right)}\\\\\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(1)/(8)} \cdot (d)/(dx)\left(8x^4+x^2-1\right)}

Next, we derive the function 8x⁴ + x² - 1 by applying the power rules:


\displaystyle{f(x) = x^n \to f'(x) = nx^(n-1) \cdot (dx)/(dx) \to f'(x)=nx^(n-1)}

Also, deriving any constants will result in 0 always.

Therefore:


\displaystyle{(d)/(dx)\left(8x^4+x^2-1\right)} = 4\cdot 8 x^(4-1) + 2\cdot x^(2-1) - 0}\\\\\displaystyle{(d)/(dx)\left(8x^4+x^2-1\right)} = 32x^3 + 2x}

Thus, we will have:


\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(1)/(8)} \cdot (32x^3+2x)}\\\\\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(1)/(8)} \cdot 2x(16x^2+1)}\\\\\displaystyle{f'(x)=(9)/(4)x\left(8x^4+x^2-1\right)^{(1)/(8)}(16x^2+1)}

Therefore, the derivative is:


\displaystyle{f'(x)=(9)/(4)x\left(8x^4+x^2-1\right)^{(1)/(8)}(16x^2+1)}

or you can rewrite in the form of surd as:


\displaystyle{f'(x)=(9)/(4)x(16x^2+1)\sqrt[8]{8x^4+x^2-1}}

User Robert Kaucher
by
7.5k points