74.0k views
0 votes
Find derivative
f'(x) =​

Find derivative f'(x) =​-example-1

1 Answer

4 votes

Answer:


\displaystyle{f'(x)=(9)/(4)x\left(8x^4+x^2-1\right)^{(1)/(8)}(16x^2+1)}

Explanation:

Given the function
\displaystyle{f(x)=\sqrt[8]{\left(8x^4+x^2-1\right)^9}}. We can rewrite the function in exponential form as
\displaystyle{f(x)=\left(8x^4+x^2-1\right)^{(9)/(8)}}. Here, we have to know the power rules and the chain rule:


\displaystyle{f(x) = u^n \to f'(x) = nu^(n-1) \cdot (du)/(dx)}

Therefore, from the above formula, we will have:


\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(9)/(8)-1} \cdot (d)/(dx)\left(8x^4+x^2-1\right)}\\\\\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(9)/(8)-(8)/(8)} \cdot (d)/(dx)\left(8x^4+x^2-1\right)}\\\\\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(1)/(8)} \cdot (d)/(dx)\left(8x^4+x^2-1\right)}

Next, we derive the function 8x⁴ + x² - 1 by applying the power rules:


\displaystyle{f(x) = x^n \to f'(x) = nx^(n-1) \cdot (dx)/(dx) \to f'(x)=nx^(n-1)}

Also, deriving any constants will result in 0 always.

Therefore:


\displaystyle{(d)/(dx)\left(8x^4+x^2-1\right)} = 4\cdot 8 x^(4-1) + 2\cdot x^(2-1) - 0}\\\\\displaystyle{(d)/(dx)\left(8x^4+x^2-1\right)} = 32x^3 + 2x}

Thus, we will have:


\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(1)/(8)} \cdot (32x^3+2x)}\\\\\displaystyle{f'(x)=(9)/(8)\left(8x^4+x^2-1\right)^{(1)/(8)} \cdot 2x(16x^2+1)}\\\\\displaystyle{f'(x)=(9)/(4)x\left(8x^4+x^2-1\right)^{(1)/(8)}(16x^2+1)}

Therefore, the derivative is:


\displaystyle{f'(x)=(9)/(4)x\left(8x^4+x^2-1\right)^{(1)/(8)}(16x^2+1)}

or you can rewrite in the form of surd as:


\displaystyle{f'(x)=(9)/(4)x(16x^2+1)\sqrt[8]{8x^4+x^2-1}}

User Robert Kaucher
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories