134k views
25 votes
Solve the matrix and prove that it is equal 0​

Solve the matrix and prove that it is equal 0​-example-1
User Ravishi
by
8.1k points

2 Answers

2 votes

Answer:

Explanation:

\underline{ \underline{ \text{Given}}} :

\begin{gathered} \tt{ {A}^{T} = \begin{bmatrix} 2 & - 4 \\ 4 & 3 \\ \end{bmatrix}}\end{gathered}

\underline{ \underline { \text{To \: Find}}} :

\underline{ \underline{ \text{Solution}}} :

The new matrix obtained from a given matrix by interchanging it's rows and columns is called the transposition of matrix. It is denoted by \sf{ {A}^{T}}

. Again , Interchange it's rows and columns in order to find ' A '.

\begin{gathered} \tt{A = \begin{bmatrix} 2 & 4 \\ - 4 & 3 \\ \end{bmatrix}}\end{gathered}

Now , LEFT HAND SIDE ( L.H.S )

\tt{ {A}^{2} - 5A+ 22I}

Here, I refers to identity matrix. A diagonal matrix in which all the elements of leading diagonal are 1 ( unit ) is called unit or identity matrix.

⟼ \begin{gathered}\begin{bmatrix} 2 & 4 \\ - 4 & 3 \\ \end{bmatrix} \times \begin{bmatrix} 2 & 4 \\ - 4 & 3 \\ \end{bmatrix} - 5 \times \begin{bmatrix} 2 & 4 \\ - 4 & 3 \\ \end{bmatrix} + 22 \times \begin{bmatrix} 1 & 0 \\ 0 & 1\\ \end{bmatrix}\end{gathered}

⟼ \begin{gathered}\begin{bmatrix} 2 \times 2 + 4 \times ( - 4)& 2 \times 4 + 4 \times 3 \\ - 4 \times 2 + 3 \times ( - 4) & - 4 \times 4 + 3 \times 3 \\ \end{bmatrix} - \begin{bmatrix} 10 & 20 \\ - 20& 15 \\ \end{bmatrix} + \begin{bmatrix} 22 & 0 \\ 0 & 22 \\ \end{bmatrix}\end{gathered}

⟼ \begin{gathered}\begin{bmatrix} 4 + ( - 16) & 8 + 12 \\ - 8 + ( - 12) & - 16 + 9 \\ \end{bmatrix} - \begin{bmatrix} 10 & 20 \\ - 20 & 15 \\ \end{bmatrix} + \begin{bmatrix} 22 & 0 \\ 0 & 22 \\ \end{bmatrix}\end{gathered}

⟼ \begin{gathered} \begin{bmatrix} - 12 & 20\\ - 20& - 7 \\ \end{bmatrix} - \begin{bmatrix} 10 & 20 \\ - 20 & 15 \\ \end{bmatrix} + \begin{bmatrix} 22 & 0 \\ 0 & 22 \\ \end{bmatrix}\end{gathered}

⟼ \begin{gathered}\begin{bmatrix} - 22 & 0 \\ 0& - 22 \\ \end{bmatrix} + \begin{bmatrix} 22 & 0 \\ 0 & 22 \\ \end{bmatrix}\end{gathered}

⟼ \begin{gathered}\begin{bmatrix} - 22 + 22 & 0 + 0 \\ 0 + 0 & - 22 + 22 \\ \end{bmatrix}\end{gathered}

⟼ \begin{gathered}\begin{bmatrix} 0 & 0\\ 0 & 0 \\ \end{bmatrix}\end{gathered}

⟼ \sf{0}0

RIGHT HAND SIDE ( R.H.S ) : 0

User Eric Snow
by
7.7k points
6 votes

Explanation:


\underline{ \underline{ \text{Given}}} :


  • \tt{ {A}^(T) = \begin{bmatrix} 2 & - 4 \\ 4 & 3 \\ \end{bmatrix}}


\underline{ \underline { \text{To \: Find}}} :


  • \sf{ {A}^(2) - 5A+ 22I= 0}


\underline{ \underline{ \text{Solution}}} :

The new matrix obtained from a given matrix by interchanging it's rows and columns is called the transposition of matrix. It is denoted by
\sf{ {A}^(T)}. Again , Interchange it's rows and columns in order to find ' A '.


\tt{A = \begin{bmatrix} 2 & 4 \\ - 4 & 3 \\ \end{bmatrix}}

Now , LEFT HAND SIDE ( L.H.S )


\tt{ {A}^(2) - 5A+ 22I}

Here, I refers to identity matrix. A diagonal matrix in which all the elements of leading diagonal are 1 ( unit ) is called unit or identity matrix.


\begin{bmatrix} 2 & 4 \\ - 4 & 3 \\ \end{bmatrix} * \begin{bmatrix} 2 & 4 \\ - 4 & 3 \\ \end{bmatrix} - 5 * \begin{bmatrix} 2 & 4 \\ - 4 & 3 \\ \end{bmatrix} + 22 * \begin{bmatrix} 1 & 0 \\ 0 & 1\\ \end{bmatrix}


\begin{bmatrix} 2 * 2 + 4 * ( - 4)& 2 * 4 + 4 * 3 \\ - 4 * 2 + 3 * ( - 4) & - 4 * 4 + 3 * 3 \\ \end{bmatrix} - \begin{bmatrix} 10 & 20 \\ - 20& 15 \\ \end{bmatrix} + \begin{bmatrix} 22 & 0 \\ 0 & 22 \\ \end{bmatrix}


\begin{bmatrix} 4 + ( - 16) & 8 + 12 \\ - 8 + ( - 12) & - 16 + 9 \\ \end{bmatrix} - \begin{bmatrix} 10 & 20 \\ - 20 & 15 \\ \end{bmatrix} + \begin{bmatrix} 22 & 0 \\ 0 & 22 \\ \end{bmatrix}


\begin{bmatrix} - 12 & 20\\ - 20& - 7 \\ \end{bmatrix} - \begin{bmatrix} 10 & 20 \\ - 20 & 15 \\ \end{bmatrix} + \begin{bmatrix} 22 & 0 \\ 0 & 22 \\ \end{bmatrix}


\begin{bmatrix} - 22 & 0 \\ 0& - 22 \\ \end{bmatrix} + \begin{bmatrix} 22 & 0 \\ 0 & 22 \\ \end{bmatrix}


\begin{bmatrix} - 22 + 22 & 0 + 0 \\ 0 + 0 & - 22 + 22 \\ \end{bmatrix}


\begin{bmatrix} 0 & 0\\ 0 & 0 \\ \end{bmatrix}


\sf{0}

RIGHT HAND SIDE ( R.H.S ) : 0

L.H.S = R.H.S [ Hence , proved ! ]

Hope I helped ! ♡

Have a wonderful day / night ! ツ

▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁

User Mofojed
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories